Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion.

نویسندگان

  • Jason J Rodriguez
  • Cristian D Cruz
  • Curt M Horvath
چکیده

The V proteins of Nipah virus and Hendra virus have been demonstrated to bind to cellular STAT1 and STAT2 proteins to form high-molecular-weight complexes that inhibit interferon (IFN)-induced antiviral transcription by preventing STAT nuclear accumulation. Analysis of the Nipah virus V protein has revealed a region between amino acids 174 and 192 that functions as a CRM1-dependent nuclear export signal (NES). This peptide is sufficient to complement an export-defective human immunodeficiency virus Rev protein, and deletion and substitution mutagenesis revealed that this peptide is necessary for both V protein shuttling and cytoplasmic retention of STAT1 and STAT2 proteins. However, the NES is not required for V-dependent IFN signaling inhibition. IFN signaling is blocked primarily by interaction between Nipah virus V residues 100 to 160 and STAT1 residues 509 to 712. Interaction with STAT2 requires a larger Nipah virus V segment between amino acids 100 and 300, but deletion of residues 230 to 237 greatly reduced STAT2 coprecipitation. Further, V protein interactions with cellular STAT1 is a prerequisite for STAT2 binding, and sequential immunoprecipitations demonstrate that V, STAT1, and STAT2 can form a tripartite complex. These findings characterize essential regions for Henipavirus V proteins that represent potential targets for therapeutic intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation.

Characterization of recent outbreaks of fatal encephalitis in southeast Asia identified the causative agent to be a previously unrecognized enveloped negative-strand RNA virus of the Paramyxoviridae family, Nipah virus. One feature linking Nipah virus to this family is a conserved cysteine-rich domain that is the hallmark of paramyxovirus V proteins. The V proteins of other paramyxovirus specie...

متن کامل

Henipavirus V protein association with Polo-like kinase reveals functional overlap with STAT1 binding and interferon evasion.

Emerging viruses in the paramyxovirus genus Henipavirus evade host antiviral responses via protein interactions between the viral V and W proteins and cellular STAT1 and STAT2 and the cytosolic RNA sensor MDA5. Polo-like kinase (PLK1) is identified as being an additional cellular partner that can bind to Nipah virus P, V, and W proteins. For both Nipah virus and Hendra virus, contact between th...

متن کامل

Hendra virus V protein inhibits interferon signaling by preventing STAT1 and STAT2 nuclear accumulation.

The V protein of the recently emerged paramyxovirus, Nipah virus, has been shown to inhibit interferon (IFN) signal transduction through cytoplasmic sequestration of cellular STAT1 and STAT2 in high-molecular-weight complexes. Here we demonstrate that the closely related Hendra virus V protein also inhibits cellular responses to IFN through binding and cytoplasmic sequestration of both STAT1 an...

متن کامل

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

Silencing STATs: lessons from paramyxovirus interferon evasion.

The signal transducer and activator of transcription (STAT) family proteins are essential mediators of cytokine and growth factor functions. The interferon (IFN) family of cytokines is well known as modulators of both innate and adaptive anti-microbial immunity. In response to the evolutionary struggle between host and pathogen, many viruses have developed strategies to bypass the IFN antiviral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 78 10  شماره 

صفحات  -

تاریخ انتشار 2004